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Dam-reservoir interaction during earthquake
S.K. Sharan'

ABSTRACT

A novel technique developed for the finite element modelling of
reservoir vibration 1s implemented in the earthquake response analysis of
gravity dams to include the effects of energy dissipations due to the
radiation and absorption of pressure waves in the reservoir. When the
oroposed radiation condition is used to model an infinitely long reservoir
as 3 finite one of relatively very short length, some minor discrepancies
are observed in the results for the complex frequency response of
hydrodynamic pressures at frequencies near the second cut-off frequency of
the reservoir vibration. The effect of such discrepancies on the
sarthquake response of dams is found to be negligible. Example analyses
are conducted by using a past earthquake data to demonstrate the
effectiveness of the proposed technique and to study the effects of

hydrodynamic interaction on the earthquake response of dams.

INTRODUCT ION

The response of a dam to an earthquake depends very significantly on
the effects of dam-reservoir interaction, compressibility of water in the
reservoir and the absorption of pressure waves at the bottom of the
reservoir (Chopra 1970; Chakrabarti and Chopra 1973; Fenves and Chopra
1983; Chopra 1987). In order to include these effects in the analysis of
a dam having an arbitrary geometry, the complete dam-reservoir system must
be discretized (Sharan and Gladwell 1985a). A computational difficulty
arises in such a discretization because in most of the practical
situations, reservoirs are infinitely long. Even if a re]atively.very
large length of the reservoir is discretized, use of the conventional
Sommerfeld radiation condition (Zienkiewicz and Newton 1969) does nol
produce satisfactory results (Humar and Roufaiel 1983). Thys d1ff1§u]ty
may be circumvented by coupling the finite element model with continuum
solutions (Hall and Chopra 1982) or boundary elements (Humar and Jablonski
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| and [M,] are the stiffness, damping and

macs matrices l/, ¥ I[‘:] and lM:I are the corresponding
| for the reservoir; [5,.] 1s the coupling matrix; (a,, &, p} are

of nodal ground accelerations, displacements and [il‘/fh'f}fiﬂmm'l*".
respectively; p is the density of water in the reservoir; w 15§
the time variable and 1 /-1,

In the above equations, H‘/._’], [('.Tt
for the dam and |
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the circular frequency of vibration, t 1§

Damping matrix Tor the recervoir

the reservoir is caused by (1) dam-reservoir

Fnergy dissipation in
e

ntraction, (ii) radiation and (iii) absorption of pressure waves al t
the reservoir. The first type of damping is modelled by dam-
reservoir coupling and the remaining two types are modelled through the
damping matrix [C_ ] in Eq. 4. [mplementation of the f‘ihf_.(;r“hmf; hfmrlurl;‘ir_y
condition (Fenves and Chopra 1983) and the proposed radiation condition
(Sharan. to be published) for a horizontal ground motion leads to the

following form of the damping matrix:
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Complex frequency response

Tab]es(}ﬂiff ¢ show absolute values of the horizontal components of
th(ej E%tﬂd;ﬁvar;;fﬂc}’J?fﬂ;%:aforcethgn (1n excess of the hydrostatic force F ')
an e S cemen . (in excess of the static d1 stat

. dyn \ splacement
2 = : 2 10n of gravity. Results are pres
3 few pyp)ca1 values of the frequency of excittion norma1izedpwitin::§pgiz
to the first cut-off frequency w, (= 0.5 ® c/d) of the reservoir. The

yalue of w = 3w, corresponds to the second cut-off frequency of the

~eservoir. In these tables, a comparison is made between results obtai
' 1 a
by using the proposed and the conventional Sommerfeld radiation conditlgii
for two different locations of the truncation boundary. By imposing the

proposed radiation condition, almost identical results were produced for
¢/d = BN 1:0 and 2.0. However, some minor discrepancies were observed
for frequencies near the second cut-off frequency of the reservoir. With
the use of the conventional Sommerfeld radiation, no convergence céUWd be
achieved even for'1arger values of ¢/d, particularly for the case of o .
1 and w/w, = 1 which 1s of greater importance in the earthquake respoﬁse

analysis.

rarthquake response analysis

The south-component of E1 Centro, 1940 earthquake (Hudson and Brady
1971) was used for the analysis. The duration of earthquake considered
was 10.24 sec and 8192 time increments were used for the fast Fourier
transform. Results for the maximum crest displacement §__ (in excess of
§.,.) and its time of occurence i, were obtained by using the proposed
technique and as shown in Table 3, results for ¢/d = 0.5 and 2.0 were
cound to be almost identical for all the cases analyzed. The effect of a_
was found to be very significant for the Pine Flat dam and almost

insignificant for the Angostura dam.

Table 3. Response of (a) Pine Flat and (b) Angostura dams to
E1 Centro earthquake obtained by using the proposed

Gos iomethod Nis e SRR e 3 e

Dam @, 0/d 5 /6. ®
L R e ve (at the cﬁggt) (sec)
(a) 1.00 0.5 6.7 2.32
2.0 6.7 73D

0.75 0.5 6.4 2 -39

2.0 5.4 2.32

(b) 1.00 0.5 6.1 2.64
2.0 6.2 2 .64

0.75 0.5 6.0 2 .48

3.6 6.0 2 .48
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